

Sede sociale: Via Granafei, 53 –72023 Mesagne (BR)

tel. e fax: 0831-777380

Laboratorio: Via Granafei, 64 – 72023 Mesagne (BR)

tel. 0831-600402

Web: www.controlcertificazione.it

e-mail: info@controlcertificazione.it - serramenti@controlcertificazione.it

Laboratorio di Prova Notificato ai sensi della Direttiva 89/106/CEE n. 2017

RAPPORTO DI PROVA

Numero:

2017-CPD-RP0006/010T

Richiedente:

TO.MA. S.p.a. S.S. 275 Maglie-Leuca Km 2,900 73036 Muro Leccese (Le)

Denominazione Campione/Prodotto sottoposto a prova:

Portafinestra a battente a due ante di cui una a ribalta commercialmente denominata "TIERRE 550TH"

(cfr. descrizione)

Prova/e eseguita/e:

Calcolo della trasmittanza termica

Riferimento/i normativo/i: EN 14351-1:2006 UNI EN ISO 10077-1:2007 UNI EN ISO 10077-2:2004

Data del rilascio: **20/05/2010**

Il rapporto è composto da n. 12 pagine e può essere riprodotto solo integralmente. I risultati ottenuti si riferiscono unicamente ai campioni sottoposti a prova.

0. Introduzione

L'analisi termica è stata eseguita su una finestra a due ante di cui una a ribalta, prodotta da TO.MA. S.p.A. E' stata calcolata la trasmittanza termica dei profili del serramento (U_f) , sulla base della norma UNI EN ISO 10077-2, e la trasmittanza termica del serramento completo (U_w) , sulla base delle indicazioni della norma UNI EN ISO 10077-1.

Ai fini del calcolo della trasmittanza U_w del serramento è stata considerata anche la trasmittanza termica della parte trasparente (U_g).

1. Descrizione del campione analizzato

La descrizione tecnica e i disegni che seguono sono stati dichiarati e forniti dal richiedente sotto la propria responsabilità e si riferiscono unicamente al campione analizzato.

Il campione sottoposto a prova è costituito da una finestra a battente a due ante in alluminio della serie commercialmente denominata dal richiedente "TIERRE 550TH".

Il richiedente ha identificato il campione ai sensi della norma di prodotto EN 14351-1:2006.

* materiale: alluminio Lega EN AW 6060 (EN 573-3 e EN 755-2), stato T5 (UNI

EN 515),

- Profili TT 2201 e TT 2602 (che costituiscono l'assemblato TR 2502)

- Profili TT 2204 e TT 2607 (che costituiscono l'assemblato TR 2506)

- Profili TT 2202 e TT 2605 (che costituiscono l'assemblato TR 2509)

- Profili TT 2207 e TT 2208 (che costituiscono l'assemblato TR 2515)

- Profilo AZ 4576

tutti della ditta TO.MA. s.p.a. S.S. 275 Maglie-Leuca km 2,9 73036 Muro Leccese (LE);

* giunzioni angolari:

- **struttura portante fissa**: squadretta a 45° in alluminio, art. **Ra 1705**, della ditta Centrone Via Pompeo Sarnelli 301, 70044 Polignano a Mare (BA);

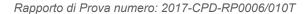
- parte mobile:

cassa interna: squadretta a 45° in alluminio, art. **Ra 1707**, della ditta Centrone Via Pompeo Sarnelli 301, 70044 Polignano a Mare (BA); cassa esterna: squadretta a cianfrinare **Ra 3806** in alluminio, squadretta di allineamento **Ra 3804**;

* vetri:

vetrocamera: 3+3 mm, camera da 15 mm con gas argon, Float 4 mm ($U_f = 1.1 \text{ W/m}^2 \cdot \text{K}$) della ditta Glaverbel;

* taglio termico:


barrette in poliammide 6.6 da 24 mm codici 09-2541-C, della ditta Mazzer Via Dante 35, 22037 Ponte Lambro (CO); 355000 e 359800 della ditta Technoform Bautec Italia, via Settembrini 80 20020 Lainate (MI)

* guarnizioni vetri:

interna: art. **Rg 308**, in *EPDM*, della ditta Complastex s.p.a. Via Spadoni 21/23, 55014 Marlia (LU); esterna: art. **Rg 351**, in *EPDM*, della ditta Complastex s.p.a. Via

Spadoni 21/23, 55014 Marlia (LU);

Questo Rapporto di Prova è conforme alla norma UNI CEI EN ISO/IEC 17025

pag. 3 di 12

* guarnizione centrale di tenuta:

art. Rg 364, in EPDM, della ditta Complastex s.p.a. Via Spadoni

21/23, 55014 Marlia (LU);

art. Rg 365, angolo vulcanizzato per Rg 364, in EPDM, della ditta

Complastex s.p.a. Via Spadoni 21/23, 55014 Marlia (LU);

* guarnizioni complementari di tenuta:

art. Rg 402, in EPDM, della ditta Complastex s.p.a. Via Spadoni

21/23, 55014 Marlia (LU);

art. **Rg 331**, in *EPDM*, della ditta Complastex s.p.a. Via Spadoni

21/23, 55014 Marlia (LU);

* sistema di drenaggio:

- n° 3 asole di 26,5x8,5 mm;

- cappetta Ra 1033, della ditta Complastex s.p.a. Via Spadoni 21/23,

55014 Marlia (LU);

* accessori:

- n° 8 punti di chiusura;

- cremonese per anta ribalta Ra 1057 (01033);

- kit Anta Ribalta **Ra 1458 (04751V)** + braccio **Ra 1460 (04761V)**;

- n° 2 catenacci **Ra 2922 (04274)**;

- n° 6 chiusure supplementari Ra 1461 (04770);

- n° 1 rostro di chiusura **Ra 2909 (01350)**;

- n° 2 cerniere per anta abbinata **Ra 1462 (04771)**;

della ditta GSG International s.p.a. Via Tubertini 1, 40054 Budrio

(BO);

- 1 coppia tappi di riporto **Ra 3802** della ditta Complastex s.p.a. Via

Spadoni 21/23, 55014 Marlia (LU).

Dimensioni dichiarate:

cfr. disegni tecnici allegati

La verniciatura viene effettuata dopo l'assemblaggio termico.

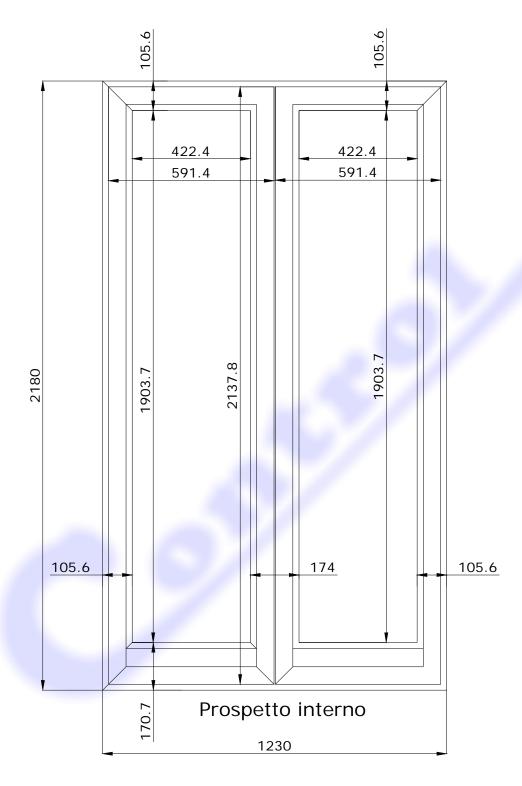


Fig. 1: Prospetto del campione analizzato (dimensioni nominali dichiarate, espresse in mm)

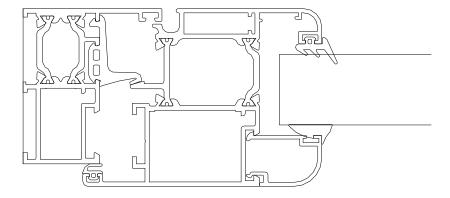


Fig.2a: Sezione del nodo 01 del campione analizzato

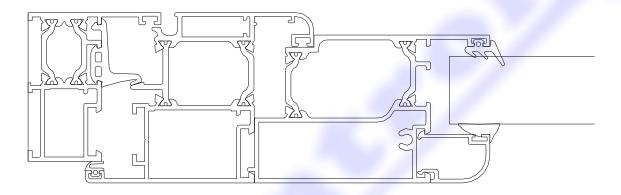


Fig.2b: Sezione del nodo 02 del campione analizzato

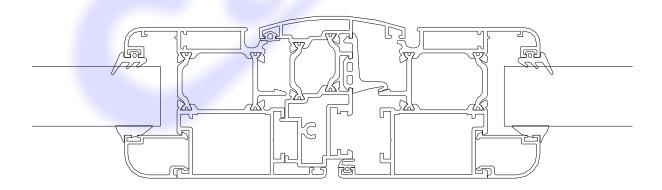


Fig.2c: Sezione del nodo 03 del campione analizzato

2. Metodo di analisi

2.1. Definizione della trasmittanza termica del serramento

Il calcolo della trasmittanza termica del serramento (U_w) è stato eseguito in base alle prescrizioni dalla norma UNI EN ISO 10077-1; utilizzando la seguente formula:

$$U_{w} = \frac{\sum A_{g} U_{g} + \sum A_{f} U_{f} + \sum \psi_{g} \cdot l_{g}}{\sum A_{g} + \sum A_{f}}$$
(1)

dove:

U_q indica la trasmittanza termica del vetro (W/m²K);

U_f indica la trasmittanza termica del telaio del serramento (W/m²K);

A_a indica l'area della parte vetrata (m²);

A_f indica l'area del telaio del serramento (m²);

 ψ_g indica la trasmittanza termica lineare fra montante o traverso e vetro (W/mK);

I_a indica la lunghezza dell'accoppiamento tra montante o traverso e vetro (m).

I calcoli delle aree A_g , A_f e del perimetro I_g , vengono eseguiti sulla base di quanto prescritto dalla norma UNI EN ISO 10077-1. Il valore della trasmittanza termica lineare ψ_g è stato ricavato dalle tabelle contenute nell'allegato E della medesima norma.

2.2. Definizione della trasmittanza termica dei nodi di telaio

I valori di trasmittanza termica dei nodi che costituiscono il telaio del serramento sono stati calcolati sulla base di quanto prescritto dalla norma UNI EN ISO 10077-2. I calcoli sono stati eseguiti utilizzando il software Flixo 6.10.

In

Tab. 1 vengono riportate le caratteristiche dei materiali che compongono i nodi di telaio analizzati.

Materiali	Conduttività (W/mK)	Emissività (%)
Lega di alluminio*	160	0,9
Lega di alluminio cavità TT**	160	0,3
Poliammide 6.6 con 25% fibra di vetro*	0,30	0,9
EPDM*	0.25	0.9

^{* =}valore ricavato dalla norma UNI EN ISO 10077-2:2004

Tab. 1. Caratteristiche termiche dei materiali che costituiscono i nodi di telaio

^{**=}valore dichiarato dal committente

3. Risultati ottenuti

3.1. Definizione delle aree e dei perimetri

Sulla base della norma UNI EN ISO 10077-1 il serramento è stato suddiviso in aree omogenee, così come riportato in Tab. 2.

Basandosi sulla suddivisione di Fig. sono stati ricavati i valori delle aree, A_g e A_f , e del perimetro, I_g , utilizzati nella formula (1) per il calcolo della trasmittanza termica del serramento completo.

Elemento	Area (m²)
Nodo 01	0,5319
Nodo 02	0,2100
Nodo 03	0,3312
Vetri	1,6082

Tab. 2. Parametri geometrici assunti per il serramento

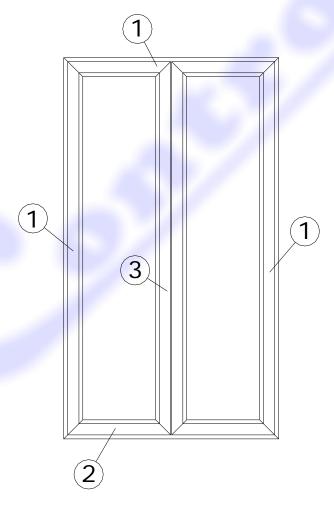


Fig.3. Suddivisione delle aree con indicazione dei nodi di appartenenza

3.2. Definizione di l_g e scelta della trasmittanza termica lineare ψ_g

Il valore l_g rappresenta la lunghezza della linea di contatto tra vetro e telaio del serramento ed è equivalente al perimetro complessivo delle parti vetrate.

Il valore Ψ_g , invece, è stato selezionato dal prospetto E.1 riportato nella norma UNI EN ISO 10077-1 per serramenti con telaio in metallo con taglio termico e vetrata doppia o tripla, vetro basso emissivo, intercapedine con aria o gas.

In base alla suddivisione del serramento riportata in Fig. 3, per I_g e Ψ_g sono stati utilizzati i valori indicati in Tab. 3.

	Ψ _g (w/mK)	I _g (m)
Finestre	0,11	9,3044

Tab. 3. Valori di I_q e Ψ_q assunti ai fini del calcolo

3.3. Calcolo della trasmittanza termica dei nodi di telaio

Vengono di seguito riportati in Fig. 4a, in Fig. 4b ed in Fig. 4c i risultati ottenuti dalle analisi effettuate sui nodi di telaio. Per i profili analizzati viene rappresentato sia l'andamento delle temperature all'interno dei profili stessi che l'andamento dei flussi di calore all'interno delle sezioni; ad ogni colore corrisponde una determinata temperatura.

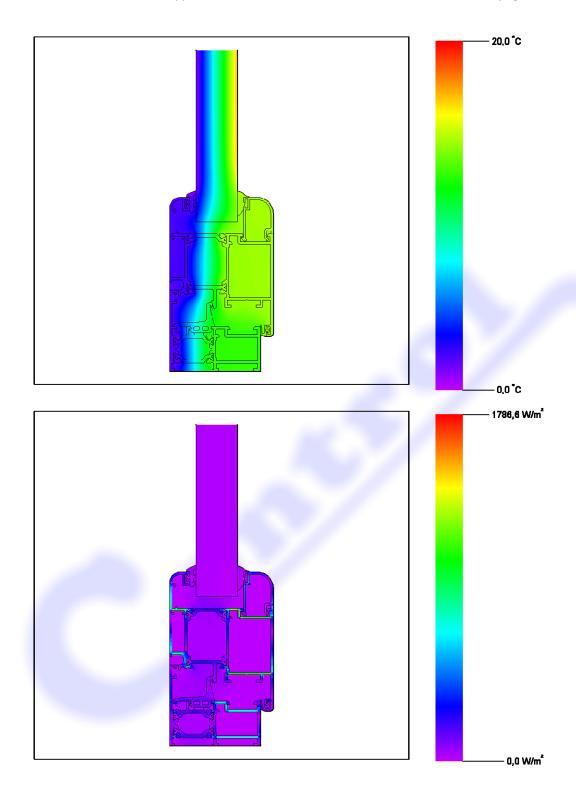


Fig.4a. Andamento delle temperature e dei flussi di calore nel nodo 01

Trasmittanza termica nodo 01: $U_f = 2,647 \text{ W/m}^2\text{K}$

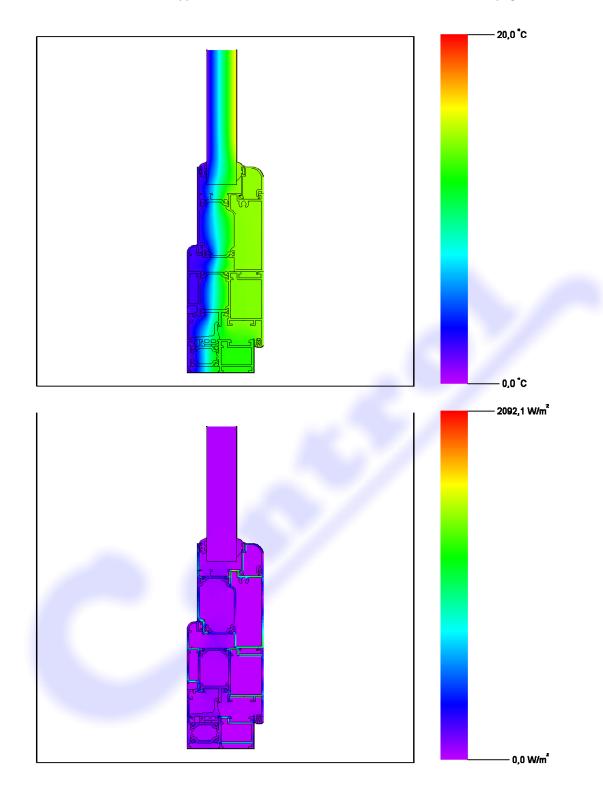


Fig.4b. Andamento delle temperature e dei flussi di calore nel nodo 02

Trasmittanza termica nodo 02: $U_f = 2,626 \text{ W/m}^2\text{K}$

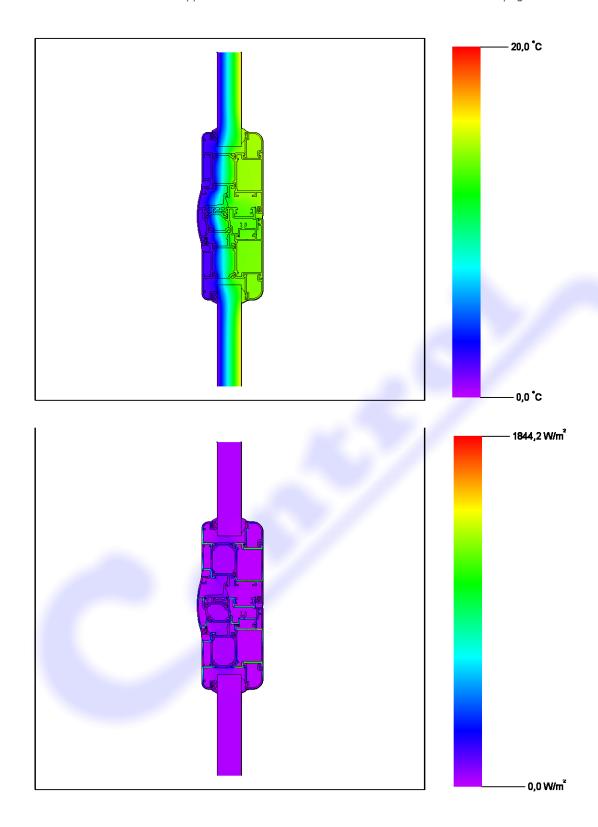


Fig.4c. Andamento delle temperature e dei flussi di calore nel nodo 03

Trasmittanza termica nodo 02: $U_f = 2,569 \text{ W/m}^2\text{K}$

3.4. Trasmittanza termica del vetro

Per il campione analizzato è stato utilizzato un vetro camera della ditta Glaverbel di spessori 3+3/15/4, con una trasmittanza termica U_q , fornita dal committente, di $1,1~W/m^2K$.

3.5. Calcolo della trasmittanza termica del serramento

In base alla norma UNI EN ISO 10077-1 il valore di trasmittanza termica del serramento, completo di parte vetrata, telaio e zone di contatto vetro-telaio, è stato calcolato secondo la (1), e risulta:

$$U_{W} = \frac{A_{g}U_{g} + A_{f}U_{f} + l_{g}\psi_{g}}{A_{g} + A_{f}}$$

Ag	area del vetro espressa in m²	1,6082
Ag Ug Af	trasmittanza termica del vetro espressa in W/m²K	1,10
Af	area del telaio espressa in m²	1,0731
Uf1	trasmittanza termica nodo 1 espressa in W/m²K	2,647
Uf2	trasmittanza termica del nodo 2 espressa in W/m²K	2,626
Uf3	trasmittanza termica del nodo 3 espressa in W/m²K	2,569
lg	perimetro totale del vetro espresso in m	9,3044
Ψg Af1	trasmittanza termica lineare espressa in W/mK	0,11
Af1	area nodo 1 espressa in m²	0,5319
Af2	area nodo 2 espressa in m²	0,2100
Af3	area nodo 3 espressa in m²	0,3312

Trasmittanza termica serramento: $U_w = 2,09 \text{ W/m}^2 \text{K}$

Il Direttore tecnico

Il Responsabile di laboratorio

Ing. Francesco Salvatore Spedicato

Ing. Antonio Summa

Il Responsabile tecnico di prova

Il Direttore della certificazione e Amministratore

P.I. Antonio Bianco

Ing. Chiara Summa